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Infinitesimal Fundamentum
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Abstract. We present a new approach for the concept of the derivative initiated by Sir Isaac Newton
and Gottfried Wilhelm Leibniz in the 17th century. We extend the ideas of Newton and Leibniz about
the derivative by introducing an infinitesimal fundamentum. The infinitesimal fundamentum of an one-
dimensional real-valued function is a mapping that coincides with the function in two points where the
difference of these points is infinitely small. In particular, for a differentiable function its derivative is
conform to the derivative of the infinitesimal fundamentum. This yields several equivalent definitions for
the derivative of real-valued functions. The consequences are new expansion formulae obtained by generic
(in particular nonlinear) infinitesimal fundamenta. That means, we present new expansion formulae
for arbitrary functions which are differentiable up to an order. This new approach of infinitesimal
fundamentum generalizes the understanding of known expansion formulae as Taylor’s formula which is
obtained by a linear infinitesimal fundamentum. Especially, we determine a new formula through an
exponential infinitesimal fundamentum.

There are many applications in applied analysis and mathematical physics. We present a comparison
of several approximation formulae resulting from different infinitesimal fundamenta. The choice of an
optimal approximation depends on the infinitesimal fundamentum and on the considered function itself.
Next, we suggest a new algorithm for finding the zeros of real-valued functions. This method can be seen
as a modification of Newton’s method. We show examples where this new method is more effective than
Newton’s. We also show that the new kind of definitions for the derivative allows to construct a new and
non-classical numerical scheme for differential equations. Relying on the finite difference method one
can now approximate the derivative in several ways to obtain discretized equations. Depending on the
differential equations we can choose a suitable infinitesimal fundamentum to get a entropy consistent
discretization. Further, in case of convergence the expansion formulae yield for smooth functions at
chosen points convergent series of real numbers. Some series are presented and the values are determined
through the new found expansion formulae.

This work gives a new insight into the comprehension for the derivative of one-dimensional functions.
Certainly, there are resulting unsolved problems. We state a list of open questions and conjectures.
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1 Introduction

Infinitesimal calculus has been initiated by Sir Isaac Newton and Gottfried Wilhelm Leibniz in the 17th
century, see the pioneering works [23,19]. Calculus with infinitely small and infinite numbers has been
used by many mathematicians in the 17th and 18th century like Leonhard Euler in [11]. This approach
developed the concept of the derivative of a function. Newton and Leibniz introduced in two different
ways the precursor definition of the derivative. In the 19th century the calculus with infinitesimals was
replaced by the limit and epsilon-delta representation according to [4,28]. This results into the well-
known definition of the derivative for a real-valued function f : R → R in some point x0 ∈ R which
reads as the existence of the limit

lim
h→0

f(x0 + h)− f(x0)
h

. (1)

We consider the original ideas of Newton and Leibniz about the derivative and extend the definition in
an equivalent way. To do so, we use the theory of Nonstandard Analysis following [18,14]. In the 20th
century the theory of infinitesimal calculus was revived as Nonstandard Analysis and introduced in a
rigorous way by Abraham Robinson in [26]. This allows to introduce the infinitesimal fundamentum (see
Definition 6) of a real-valued function. The infinitesimal fundamentum is a functions which enables the
definition of the derivative. For example, a special exponential infinitesimal fundamentum (see Definition
8) yields the limit

lim
h→0

f(x0 + h)− f(x0)
eh − 1 (2)

which is the derivative of a differentiable function f in x0 ∈ R by the rule of l’Hospital. Obviously, the
quotient in definition in (2) goes faster to the derivative as in (1) for rapidly increasing and differen-
tiable functions. In particular, a special linear infinitesimal fundamentum (see Definition 7) implies the
standard definition (1).

The quotient in the limit (1) can be seen as an approximation of the derivative for |h| � 1. Rear-
ranging yields an approximation formula for f at the point x0 + h

f(x0 + h) ≈ f(x0) + f ′(x0)h

or according to (2)
f(x0 + h) ≈ f(x0) + f ′(x0)(eh − 1)

for x0 ∈ R and |h| � 1. Taylor’s Theorem expand this approximation to the formula

f(x0 + h) = f(x0) + f ′(x0)h+ f ′′(x0)
2! h2 + f (3)(x0)

3! h3 + · · ·
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where higher order derivatives of the considered function f are included, see for example [17,13,2,1]. We
refine Taylor’s formula concerning to an arbitrary infinitesimal fundamentum. For instance, in relation
to (2), we obtain an expansion formula of the form

f(x0 + h) = c0(x0) + c1(x0)(eh − 1) + c2(x0)(eh − 1)2 + c3(x0)(eh − 1)3 + · · ·

for some to be determined quantities cj(x0) (for j ∈ N0) depending on the derivatives of the considered
smooth function. The explicit determination of cj(x0) is stated as the main result of Section 3 in
Theorem 1. Note that cj(x0) does not coincide for all j ∈ N0 with the terms from Taylor’s formula. The
new derived formula in Theorem 1 yields a triangular array of numbers resulting from an exponential
infinitesimal fundamentum, see Figure 4 in Section 3 for the explicit representation.

We conclude from the new expansion formulae (obtained by different infinitesimal fundamenta)
several applications, see Section 4. In mathematics and mathematical physics it is an advantage to
approximate given functions to obtain quantitative results, see e.g. [15,16,8,6]. We mention the descrip-
tion of a mathematical pendulum which reads as a nonlinear ordinary differential equation including the
sine. For small angular displacements the mathematical pendulum is approximated by a linear equation
where the approximation is done via Taylor’s formula, see [15,16]. Depending on the considered function
one can now choose several approximations around a given point resulting from different infinitesimal
fundamenta. The error difference of the function and its approximation varies from the chosen approxi-
mation formula. An effective choice of the formula depends on the properties of the considered function
or respectively of the solution to differential equations. The approximation formula can also be helpful
for finding the roots of real-valued functions. We mention the explicit representation of the square root
of two which is a transcendent number. The property how fast the quotient in (2) goes to the derivative
becomes important if we consider an algorithm for finding the roots of real-valued functions. In Section
4 we present a faster iterative algorithm than Newton’s method for finding the square root of two.

The mathematical description of physical processes at the continuum-mechanical level often leads
to systems of partial differential equations, see for instance [12,25,7]. On the microscopic level the
description is given by a typically high dimensional system of ordinary differential equations. It is also
useful to study an approximation of differential equations as for the description of the mathematical
pendulum. Another way to approximate differential equations is to consider the system of equations on
a grid. This yields a numerical discretization which converges in the limit case to the original system. In
particular, the theory of numerical analysis uses the approximation of the derivative to obtain discretized
systems. Now, we have the possibility to choose several different discretizations of differential equations.
Note that the convergence of the expansion formulae and so the efficiency of the numerical schemes
are not discussed in this work. In the case that the expansion of smooth functions implies a convergent
series of real-valued functions, we obtain for fixed points convergent series of real numbers.

1.1 Outline

This work is organized as follows. In Section 2 we briefly present the theory of Nonstandard Analysis. We
define an equivalence relation on the space of real-valued sequences RN. The extension of real numbers
to the hyperreal numbers is done by a quotient set with the use of the previous equivalence relation. This
deduces the definition of infinitely small and infinite numbers. Then, the ideas of Newton and Leibniz
about the derivative are presented. The concept of infinitesimals allows to extend the ideas of Newton
and Leibniz to define the infinitesimal fundamentum of a real-valued function. This section is closed with
several examples for the infinitesimal fundamentum and hence the resulting definition of the derivative.
Section 3 contains the new expansion formula resulting from an exponential infinitesimal fundamentum.
The main result in this section is formulated in Theorem 1. The proof of this theorem is technical and
will be done by an inductive way. The expansion formula resulting from a slow exponential infinitesimal
fundamentum is stated in Theorem 2. The proof of Theorem 2 is moved to Appendix A. This section is
closed with a comparison of the given expansion formulae for one example. In Section 4 we present several
applications of the new derived expansion formulae. We start with an approximation of functions around
the expansion point. We state several approximations resulting from different infinitesimal fundamenta.
Then, we present a method for finding the roots of function and compare this algorithm with Newton’s
method for one example. After that non-classical numerical schemes for partial differential equations
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are introduced. This section is closed with the application of the expansion formulae to series. In the
last section we predict some conjectures and state open questions.

2 Infinitesimal Calculus

The goal of this section is to introduce the definition of the infinitesimal fundamentum of a real-valued
function. For this definition we need the theory about the calculus with infinitesimal numbers. Many
mathematicians like Leonhard Euler used this kind of numbers in the 18th century. As a motivation we
state the original derivation of Euler’s number from Euler’s work [11, Chapter 7] by using infinitesimal
numbers.

It is known that a0 = 1. If a is a number greater than one then it follows for varying the
exponent of a with an infinitely small number ω that there is an infinitely small number
ψ such that

aω = 1 + ψ .

Since a is unknown we set ψ = kω for some real number k. It yields for an arbitrary
number i (Note that this is not the imaginary number) that

aiω = (1 + kω)i = 1 + i

1kω + i(i− 1)
2! k2ω2 + i(i− 1)(i− 2)

3! k3ω3 + · · · ,

where this expansion was well known. We choose i = z
ω for some finite number z, i.e. i

is now chosen as an infinitely large number and obtain

az = 1 + 1
1kz + (i− 1)

1 · 2i k
2z2 + (i− 1)(i− 2)

1 · 2i · 3i k3z3 + · · · .

Since i is an infinitely large number, it follows that i−1
i = 1, (i−1)

2i = 1/2 and so on. We
obtain for z = 1

a = 1 + 1
1k + 1

2!k
2 + 1

3!k
3 + 1

4!k
4 + · · ·

and especially we define for k = 1 the finite number

a = 1 + 1
1 + 1

2! + 1
3! + 1

4! + · · · .

abstracted from [11]: Introductio in Analysin Infinitorum, Chapter 7, 1748

In the 19th century the calculus with infinitesimals was replaced by limits, respectively by the epsilon-
delta method. In the 20th century the theory about Nonstandard Analysis was founded where real
numbers are extended to hyperreal numbers which allows the calculus with infinitesimals in a rigorous
way.

Next, we give an introduction into the theory of Nonstandard Analysis to understand the unknown
properties of functions varying in infinitely small quantities.

2.1 Nonstandard Analysis

We briefly introduce the essential basics of Nonstandard Analysis which will be used in this work, see
[14,18] for the details. The formal definition of the hyperreal numbers R∗ is given by the quotient set

R∗ := RN/ ∼

where the equivalence relation ∼ on RN will be defined with the help of an ultrafilter on N. We are going
to introduce the definition of an ultrafilter and the equivalence relation on RN.
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Definition 1. A nonempty system F ⊂ P(N) =
{
A
∣∣ A ⊂ N

}
is called a filter on N if the following

holds

(i) ∅ /∈ F ,
(ii) A,B ∈ F ⇒ A ∩B ∈ F ,
(iii) A ∈ F , A ⊂ B ⊂ N ⇒ B ∈ F .

An ultrafilter is a filter that satisfies

∀A ⊂ N ⇒ (A ∈ F ∨ Ac ∈ F) ,

where Ac := N \A. The cofinite filter on N is the system

F0 :=
{
A ⊂ N

∣∣ N \A is finite
}
.

Zorn’s Lemma guarantees the existence of an ultrafilter including the cofinite filter. For our analysis
we fix such an ultrafilter on N with

N \A ∈ F for all finite subsets A ⊂ N.

Then, we can define an equivalence relation ∼ on RN.

Definition 2. For α = (αn)n∈N ∈ RN and β = (βn)n∈N ∈ RN we define the equivalence relation on
RN through

α ∼ β :⇔
{
n ∈ N

∣∣ αn = βn
}
∈ F .

For a real number r ∈ R we define the constant sequence rN ∈ RN through

rN := (r, r, r, ...) .

The equivalence class [α] for any α ∈ RN is

[α] :=

{
r if α ∼ rN for some r ∈ R,{
β ∈ RN

∣∣ α ∼ β} otherwise .

The hyperreal numbers R∗ are defined by

R∗ :=
{

[α]
∣∣ α ∈ RN}

Remark 1. Note that the construction of the hyperreal numbers R∗ depends on the given ultrafilter
and we have the following properties

• R ⊂ R∗,
• ∀r ∈ R : [rN] = r,
• [α] = [β] ⇔ α ∼ β for α, β ∈ RN.

Proposition 1. The structure (R∗,+, ·,≤) is an ordered field with zero [0N] = 0 and unity [1N] = 1,
where we have the following definitions:

(i) for α, β ∈ RN we define

[α] + [β] := [α+ β] and [α] · [β] := [α · β] ,

(ii) for α, β ∈ RN we define
[α] ≤ [β] :⇔

{
n ∈ N

∣∣ αn ≤ βn} ∈ F .
Now, the goal is to define infinitesimals and an equivalence relation ' on the hyperreal numbers R∗.

We are going to introduce some useful notations.
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Definition 3. Let α, β ∈ RN. We say

αj = βj almost everywhere (a.e.) :⇔
{
j ∈ N

∣∣ αj = βj
}
∈ F

and
αj ≤ βj a.e. :⇔

{
j ∈ N

∣∣ αj ≤ βj} ∈ F .
In an analogous way we define αj ≥ βj almost everywhere. Further, we define for α ∈ RN the absolute
value through

|[α]| :=

{
[α] for [α] ≥ 0 ,
−[α] for [α] ≤ 0 .

We state some properties for the calculus in R∗ where the proofs can be found in [14,18].

Proposition 2. Let α, β ∈ RN and r, ε ∈ R with ε > 0. Then, the following holds

(i) [α] = [β] ⇔ αj = βj a.e.,
(ii) |[α]− [β]| ≤ ε ⇔ |αj − βj | ≤ ε a.e.,

(iii) lim
j→∞

αj = r ∈ R ⇒ |[α]− r| ≤ 1/n for all n ∈ N,

(iv) lim
j→∞

αj = +∞ ∈ R ⇒ [α] ≥ n for all n ∈ N,

Definition 4. Let [α], [β] ∈ R∗.

(i) [α] is called finite if [α] ≤ n for some n ∈ N,
(ii) [α] is called infinite if [α] ≥ n for all n ∈ N,
(iii) [α] is an infinitesimal if [α] ≤ 1/n for all n ∈ N,
(iv) We define an equivalence relation on R∗ through

[α] ' [β] :⇔ [α]− [β] is an infinitesimal.

Note that R∗ includes infinitesimals which are not equal to zero, e.g. [( 1
j )j∈N] is an infinitesimal and

not equal zero. We also have for [α], [β] ∈ R∗

[α] ' [β] ⇔ (|αj − βj | ≤ 1/n a.e. for all n ∈ N) .

We mention that for all finite [α] ∈ R∗ there is an unique real number r ∈ R such that [α] ' r. This
real number r of any finite hyperreal number [α] is called the standard part and we write st([α]) = r.

We extend real-valued functions
f : R→ R : x 7→ f(x)

in a canonical way to hyperreal-valued functions.

Definition 5. For f : R→ R the hyperreal extension is

f∗ : R∗ → R∗ : [α] 7→ f∗([α]) := [β]

with βj := f(αj) for j ∈ N.

It yields that f∗([α]) does not depend on the representative of the equivalence class [α] and for
all real numbers r ∈ R we have f∗(r) = f(r). In what follows the brackets in the equivalence class for
elements of R∗ are omitted. Especially, infinitesimals [α] ∈ R∗ are indicated by dα. Now, differentiability
of real-valued functions can be formulated with the use of infinitesimals and the hyperreal extension as
follows.

Proposition 3 (Differentiability). Let f : R→ R and x0, c ∈ R. Then, the followings are equivalent:

(i) f is differentiable in x0 with the derivative f ′(x0) = c,
(ii) the limit

f ′(x0) := lim
h→0

f(x0 + h)− f(x0)
h

exists and it yields f ′(x0) = c,
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(iii) it yields
f∗(x0 + dx)− f(x0)

dx
' c

for all 0 6= dx ' 0.

Example 1. We determine the derivative of the function f(x) = x2 in x0 ∈ R. It yields for any
infinitesimal 0 6= dx ∈ R∗

f∗(x0 + dx)− f(x0)
dx

= (x0 + dx)2 − x2
0

dx
= 2x0 + dx ' 2x0

since dx is an infinitesimal. This implies that f ′(x0) = 2x0.

Example 2. We derive Euler’s number via Nonstandard Analysis. It remains only to show that i−1
i = 1

for an infinitely great number i. Then, by defining the infinitely small number dh := 1
i we calculate

i− 1
i

=
1
dh − 1

1
dh

= dh · 1− dh
dh

= 1− dh ' 1 .

Then, it follows as in Euler’s work [11, Chapter 7] that

a = 1 + 1
1k + 1

2!k
2 + 1

3!k
3 + 1

4!k
4 + · · ·+ infinitesimal quantities .

Since a ∈ R, it follows that
a = 1 + 1

1k + 1
2!k

2 + 1
3!k

3 + 1
4!k

4 + · · ·

which is for k = 1 Euler’s number.

2.2 Infinitesimal Fundamentum

We are going to introduce the infinitesimal fundamentum of a real-valued function f : R → R. First,
we present the ideas of Newton and Leibniz about the derivative of a function. We start with Newton’s
idea. Newton considers an observed motion f(t) (in Newton’s way of speaking a so-called fluent) in a
time interval. The main goal is to determine the speed at some time t0. We can observe the motion at
time t0 and at the time t1 > t0 then the approximative speed at time t0 is given by the quotient of the
covered distance and the time difference, i.e.

speed at time t0 ≈
f(t1)− f(t0)

t1 − t0
,

see Figure 1. Newton defines the speed of the motion at time t0 (in Newton’s way of speaking a so-called
fluxion) as the quotient

f(t)− f(t0)
t− t0

for an infinitely small time interval, i.e. t− t0 is an infinitesimal, see also [16,15,8].
The investigation of Leibniz is based on the following idea. Leibniz assumes that a curve f depending

on the variable x (like the motion f in Newton’s context) is an infinite polygon. Then, there is an
infinitely small slope triangle such that the tangent at some point x0 is intersecting the curve in an
infinitesimal line, see Figure 2. The slope of the tangent at some point x0 is given by the quotient

slope of tangent = df(x0)
dx

where dx is an infinitely small number and df(x0) = f(x0 + dx)− f(x0), see also [3].
We are going to introduce the infinitesimal fundamentum of a real-valued function f : R→ R : x 7→

f(x). Our approach is based on the ideas of Newton and Leibniz. But we assume that the straight line
(linear curve) between the points (x0, f(x0)) and (x0 + dx, f(x0 + dx)) can be replaced in a suitable
way by an curved line (nonlinear curve). In the coherence of Newton that means we consider a curved
line instead of the secant. In the context of Leibniz that means we consider a curved infinitesimal
slope triangle, see Figure 2 and Figure 3. We introduce the infinitesimal fundamentum in the following
definition.



8 Buğra Kabil

f(t1)

f(t0)

Time

speed

t0 t1

Fig. 1 Newton’s idea: Observed motion f(t) at time t0 and t1.

x0

dx

df

tangent

Fig. 2 Leibniz’ idea: Infinitesimal slope triangle with infinitesimals df and dx.

df

x0 x0 + dxt0 t1

Extended Newton Extended Leibniz

Fig. 3 Idea of the infinitesimal fundametum.

Definition 6. Let f : R→ R, x0 ∈ R and an infinitesimal dh 6= 0 be given. A function g : R→ R with{
g(x0) = f(x0)
g∗(x0 + dh) = f∗(x0 + dh)

(3)

is called the infinitesimal fundamentum of f in x0 with the infinitesimal dh.

Corollary 1. Let g be the infinitesimal fundamentum of f in x0 ∈ R with the infinitesimal dh. Further,
let f and g be differentiable in x0. Then, it yields

f ′(x0) = g′(x0) .
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Proof. Using Proposition 3 and (3) we obtain

g′(x0) ' g∗(x0 + dh)− g(x0)
dh

= f∗(x0 + dh)− f(x0)
dh

' f ′(x0)

for any infinitesimal 0 6= dh ∈ R∗. Since f ′(x0), g′(x0) ∈ R it yields

f ′(x0) = g′(x0) .

2

We mention that the choice of the infinitesimal fundamentum is arbitrary and that the infinites-
imal fundamentum which is used in Newton’s and Leibniz’ context is given by a linear infinitesimal
fundamentum, see the following Definition.

Definition 7. We call the function

g∗(z) = f∗(x0 + dh)− f(x0)
dh

(z − x0) + f(x0) (4)

the linear infinitesimal fundamentum of f in x0 with the infinitesimal dh.

Next, we state the exponential infinitesimal fundamentum which will be studied in detail in the next
section. In this case we do not have a straight line in the infinitesimal slope triangle.

Definition 8. We call the function

g∗(z) = f∗(x0 + dh)− f(x0)
edh − 1

(
ez−x0 − 1

)
+ f(x0) (5)

the exponential infinitesimal fundamentum of f in x0 with the infinitesimal dh.

The exponential infinitesimal fundamentum of differentiable functions f yields by using Corollary 1
and Proposition 3 the equality

f ′(x) = lim
h→0

f(x+ h)− f(x)
eh − 1 (6)

for any x ∈ R. Note that equation (6) is verified for continuously differentiable functions f by using
l’Hospital’s rule.

Remark 2. We mention that the exponential infinitesimal fundamentum (5) is a smooth function and
we obtain a representation of higher order derivatives of the order n ∈ N through

f (n)(x0) ' d(n)f(x0)
n∑
k=0

(
n
k

)
(−1)kekdh

where we have defined the operator df(x0) := f∗(x0 + dh) − f(x0) for smooth functions f in x0 ∈ R
with the infinitesimal dh.

2.3 Examples For Infinitesimal Fundamenta

We list examples for several infinitesimal fundamenta and consequential the equivalent formulation for
the derivative of a real-valued function f : R→ R in x0 ∈ R.

1. The standard infinitesimal fundamentum as it was used by Newton and Leibniz is the linear in-
finitesimal fundamentum and given by

g∗(z) = f∗(x0 + dh)− f(x0)
dh

(z − x0) + f(x0)

with the infinitesimal dh. The resulting formulation of the derivative is the well-known formula

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

.
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2. We consider the quadratic infinitesimal fundamentum

g∗(z) = az2

for some a ∈ R∗. It yields for x0 6= 0

2ax0 ' g′(x0) = f ′(x0) (7)

and for any infinitesimal dh

g∗(x0 + dh)− g(x0) = a(x0 + dh)2 − ax2
0 = 2ax0dh+ adh2 = f∗(x0 + dh)− f(x0) .

This implies by using (7)

f ′(x0) ' f∗(x0 + dh)− f(x0)
dh

− adh .

It remains to specify a. Using a = f∗(x0+dh)−f(x0)
2x0dh+dh2 results in

f ′(x0) ' f∗(x0 + dh)− f(x0)
dh

− f∗(x0 + dh)− f(x0)
2x0 + dh

' f∗(x0 + dh)− f(x0)
dh

since f∗(x0+dh)−f(x0)
2x0+dh is an infinitesimal. We obtain as the for the linear infinitesimal fundamentum

the relation
f ′(x0) = lim

h→0

f(x0 + h)− f(x0)
h

.

3. We state a modified exponential infinitesimal fundamentum of the form

g∗(z) = f∗(x0 + dh)− f(x0)
eλdh − 1

(
eλ(z−x0) − 1

)
+ f(x0)

for λ ∈ R \ {0}. The resulting derivative is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
eλdh−1

λ

.

4. We choose an infinitesimal fundamentum of the form

g∗(z) = a sin(z) + b (8)

for some a, b ∈ R∗. It yields
g′(x0) ' a cos(x0)

and for any infinitesimal dh

g∗(x0 + dh)− g(x0) = a sin(x0 + dh)− a sin(x0) .

Addition theorems imply

g∗(x0 + dh)− g(x0) = a(sin(x0) cos(dh) + sin(dh) cos(x0))− sin(x0))

and so

g∗(x0 + dh)− g(x0) = a(sin(x0)(cos(dh)− 1) + sin(dh) cos(x0)) = f∗(x0 + dh)− f(x0) .

Using f(x0) = g(x0) = a sin(x0) + b it yields

f∗(x0 + dh)− f(x0)− (f(x0)− b)(cos(dh)− 1) = a cos(x0) sin(dh) .

We obtain by using
f ′(x0) = g′(x0) ' a cos(x0)

following relation

f ′(x0) ' f(x0 + dh)− cos(dh)f(x0) + b(cos(dh)− 1)
sin(dh) = f(x0 + dh)− cos(dh)f(x0)

sin(dh) +b cos(dh)− 1
sin(dh) .
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Altogether, we have

f ′(x0) ' f(x0 + dh)− cos(dh)f(x0)
sin(dh)

since b cos(dh)−1
sin(dh) is an infinitesimal. In the limit notation that means

f ′(x0) = lim
h→0

f(x0 + h)− cos(h)f(x0)
sin(h) .

5. An infinitesimal fundamentum of the form

g∗(z) = a cos(z) + b

for some a, b ∈ R∗ yields as for the sine the same relation

f ′(x0) ' f(x0 + dh)− cos(dh)f(x0)
sin(dh) .

6. We consider a logarithmic infinitesimal fundamentum of the form

g∗(z) = a ln(z) + b

for some a, b, z ∈ R∗ with z > 0. It yields for all x0 > 0
a

x0
' g′(x0) = f ′(x0)

and for any infinitesimal dh

g∗(x0 + dh)− g(x0) = a ln(x0 + dh)− a ln(x0) = a ln
(

1 + dh

x0

)
= f∗(x0 + dh)− f(x0) .

We obtain by using a ' x0 f
′(x0)

f ′(x0) ' f∗(x0 + dh)− f(x0)
x0 ln

(
1 + dh

x0

) .

This implies for all x0 > 0

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
x0 ln

(
1 + h

x0

) .

7. We fix a function f : R+ → R+ and x0 ∈ R+ and choose an infinitesimal fundamentum of the form

g∗(z) = a
√
z

for some a ∈ R∗. It yields for all x0 > 0
a

2√x0
' g′(x0) = f ′(x0)

and for any infinitesimal dh

(g∗(x0 + dh))2 − (g(x0))2 = a2(x0 + dh)− a2x0 = a2dh = (f∗(x0 + dh))2 − (f(x0))2 .

Using
a2 ' 2a

√
x0f

′(x0) = 2f(x0)f ′(x0)

we obtain

f ′(x0) ' (f∗(x0 + dh))2 − (f(x0))2

2f(x0)dh = f∗(x0 + dh) + f(x0)
2f(x0) · f

∗(x0 + dh)− f(x0)
dh

.

That means

f ′(x0) = lim
h→0

f(x0 + h) + f(x0)
2f(x0) · f(x0 + h)− f(x0)

h
= lim
h→0

f(x0 + h)− f(x0)
h

.
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3 Expansion Formula

We introduce Taylor’s expansion formula which can be obtained by the linear infinitesimal fundamentum
(4). Using the linear infinitesimal fundamentum the derivative at x ∈ R is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

For f ∈ C([a, b],R) and f differentiable in (a, b) the mean value theorem implies some c ∈ (a, b) such
that

f(b) = f(a) + (b− a)f ′(c)

or equivalently

∀x ∈ [a, b], ∀h ∈ R, |h| < min{|x− a|, |b− x|}, ∃c ∈ (a, b) : f(x+ h) = f(x) + hf ′(c) .

Taylor’s expansion formula is a series expansion of functions of the form

f(x+ h) = f(x) + hf ′(x) + h2 f
′′(x)
2! + h3 f

(3)(x)
3! + · · · (9)

which a polynomial in the variable h with coefficients depending on the derivatives of the considered
function f . The goal is to obtain a new Taylor’s expansion formula obtained by an exponential infinites-
imal fundamentum (5), i.e. we search a representation of the function f at some point x + h of the
form

f(x+ h) = c0(x) + c1(x)(eh − 1) + c2(x)(eh − 1)2 + c3(x)(eh − 1)3 + · · ·

for some coefficients c0(x), c1(x), c2(x), ... depending on the derivatives of f . The main result in this
section is given by the following theorem.

Theorem 1. Let a, b ∈ R with a < b and n ∈ N0. Further, let f ∈ Cn([a, b]) and f (n) differentiable in
(a, b). Then, there is a constant c ∈ (a, b) such that

f(b) = f(a) +
n∑
j=1

(eb−a − 1)j

j!

j∑
k=1

ajkf
(j+1−k)(a) +Rn(b, a, c) , (10)

where

Rn(b, a, c) = ec−b
(eb−a − 1)n+1

(n+ 1)!

n+1∑
k=1

an+1
k f (n+2−k)(c)

and j, k ∈ N with k ≤ j

ajk :=


1 for k = 1, j ≥ 1 ,
−(j − 1)aj−1

k−1 + aj−1
k for 1 < k < j ,

(−1)j+1(j − 1)! for j = k ≥ 1 .
(11)

Corollary 2. Let a, b ∈ R with a < b and n ∈ N. Further, let f ∈ Cn([a, b]) and f (n) differentiable in
(a, b). Then, the following holds:
∀x ∈ [a, b], ∀h ∈ R, |h| < min{|x− a|, |b− x|}, ∃ζ ∈ (a, b) :

f(x+ h) = f(x) +
n∑
j=1

(eh − 1)j

j!

j∑
k=1

ajkf
(j+1−k)(x) +Rn(h+ x, x, ζ) , (12)

where

Rn(h+ x, x, ζ) = eζ−x−h
(eh − 1)n+1

(n+ 1)!

n+1∑
k=1

an+1
k f (n+2−k)(ζ) . (13)
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First, we illustrate in Figure 4 an explicit representation of the coefficients ajk used in (10) and (12).
In Figure 5 we state an algorithm to calculate the coefficients aj+1

k for given coefficients ajk. Note that
the sum over the coefficients is equal zero for all n ∈ N, i.e.

n∑
k=1

ank = 0 .

In the case that the rest term (13) vanishes for a smooth function f ∈ C∞([a, b]) we obtain an expansion
formula of the form

f(x+ h) = f(x) + f ′(x)(eh − 1) + f ′′(x)− f ′(x)
2! (eh − 1)2 + f ′′′(x)− 3f ′′(x) + 2f ′(x)

3! (eh − 1)3 + · · · ,

where x+ h ∈ [a, b].

a1
1

a2
1 a2

2

a3
1 a3

2 a3
3

a4
1 a4

2 a4
3 a4

4

a5
1 a5

2 a5
3 a5

4 a5
5

a6
1 a6

2 a6
3 a6

4 a6
5 a6

6

1
1 -1

1 -3 2
1 -6 11 -6

1 -10 35 -50 24
1 -15 85 -225 274 -120

Fig. 4 Coefficients aj
k

(see (11)) in the expansion formula (10) up to the order n = 6.

1
1 -1

1 -3 2
1 -6 11 -6

1 -10 35 -50 24
1 -15 85 -225 274 -120

1 -10 35 -50 24
-120-5 50 -175 250

-120-15 85 -225 2741+

n = 5 :
·(−5)

Fig. 5 Algorithm for determination the coefficients a6
k from the previous coefficients a5

k.

3.1 Proof Of Theorem 1

We are going to prove Theorem 1. For illustrating we start proving the theorem for the trivial case
n = 1. Then, the general case n ∈ N will be proved. For the case n = 1 we have to show that there is
some c ∈ (a, b) such that

f(b) = f(a) + (eb−a − 1)f ′(a) + ec−b
(eb−a − 1)2

2! (f ′′(c)− f ′(c)) (14)

We define
F (t) := f(b)− f(t)− (eb−t − 1)f ′(t)−m (eb−t − 1)2

2!
with

m := f(b)− f(a)− (eb−a − 1)f ′(a)
(eb−a−1)2

2!

.

Then, it yields
F (b) = 0 = F (a)
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such that the mean value theorem implies some c ∈ (a, b) with F ′(c) = 0, i.e.

0 = F ′(c) = −f ′(c)− (eb−c − 1)f ′′(c) + eb−cf ′(c) +m(eb−c − 1)eb−c .

We obtain
0 = F ′(c) = (eb−c − 1)

(
(f ′(c)− f ′′(c)) +meb−c

)
and so

m = (f ′′(c)− f ′(c))ec−b .

Using F (a) = 0 we obtain

f(b) = f(a) + (eb−a − 1)f ′(a) + ec−b
(eb−a − 1)2

2! (f ′′(c)− f ′(c))

as stated in (14).

Proof of Theorem 1 for the general case n ∈ N. We define

F (t) := f(b)− f(t)−
n∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+1−k)(t)−m (eb−t − 1)n+1

(n+ 1)!

with

m :=
f(b)− f(a)−

n∑
j=1

(eb−a−1)j
j!

j∑
k=1

ajkf
(j+1−k)(a)

(eb−a−1)n+1

(n+1)!

.

The function F satisfies F (b) = 0 = F (a) and the mean value theorem yields some c ∈ (a, b) with
0 = F ′(c). We determine the derivative

F ′(t) = −f ′(t)−
n∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t)

+eb−t
n∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t) +meb−t

(eb−t − 1)n

n! .

First, we claim that for all n ∈ N

−f ′(t) −
n∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n

n!

n+1∑
k=1

an+1
k f (n+2−k)(t) (15)

which will be proved with the help of an induction.
Induction Basis n = 1: We obtain

−f ′(t)− (eb−t − 1)a1
1f
′′(t) + eb−ta1

1f
′(t) = −(eb−t − 1)(f ′′(t)− f ′(t))

= −(eb−t − 1)(a2
1f
′′(t) + a2

2f
′(t))

which shows that the statement (15) holds for n = 1.
Induction Hypothesis: We assume that the statement (15) holds for n ∈ N, i.e.

−f ′(t) −
n∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n

n!

n+1∑
k=1

an+1
k f (n+2−k)(t) . (16)
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Then, we show under the hypothesis (16) that statement (15) is satisfied for n+ 1.
Inductive Step n n+ 1: We calculate

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= −f ′(t)−
n∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

− (eb−t − 1)n+1

(n+ 1)!

n+1∑
k=1

an+1
k f (n+3−k)(t) + eb−t

(eb−t − 1)n

n!

n+1∑
k=1

an+1
k f (n+2−k)(t) .

Using the induction hypothesis (16) yields

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n

n!

n+1∑
k=1

an+1
k f (n+2−k)(t)− (eb−t − 1)n+1

(n+ 1)!

n+1∑
k=1

an+1
k f (n+3−k)(t) (17)

+eb−t (eb−t − 1)n

n!

n+1∑
k=1

an+1
k f (n+2−k)(t) .

We take on the right hand-side in (17) the first and last term together. Further, we factor out− (eb−t−1)n+1

(n+1)!
which implies

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n+1

(n+ 1)!

(
n+1∑
k=1

an+1
k f (n+3−k)(t)− (n+ 1)an+1

k f (n+2−k)(t)

)
.

A shifting in the index yields

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n+1

(n+ 1)!

(
n∑
k=0

an+1
k+1f

(n+2−k)(t)−
n+1∑
k=1

(n+ 1)an+1
k f (n+2−k)(t)

)

= − (eb−t − 1)n+1

(n+ 1)!

(
n∑
k=1

an+1
k+1f

(n+2−k)(t)−
n∑
k=1

(n+ 1)an+1
k f (n+2−k)(t)

)

− (eb−t − 1)n+1

(n+ 1)!

(
an+1

1 f (n+2)(t)− (n+ 1)an+1
n+1f

′(t)
)
.

We obtain

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n+1

(n+ 1)!

(
an+1

1 f (n+2)(t)− (n+ 1)an+1
n+1f

′(t) +
n∑
k=1

f (n+2−k)(t)
(
an+1
k+1 − (n+ 1)an+1

k

))
.

Using (
an+1
k+1 − (n+ 1)an+1

k

)
= an+2

k+1
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and shifting again in the index yields

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n+1

(n+ 1)!

(
an+1

1 f (n+2)(t)− (n+ 1)an+1
n+1f

′(t) +
n+1∑
k=2

an+2
k f (n+3−k)(t)

)

= − (eb−t − 1)n+1

(n+ 1)!

(
an+1

1 f (n+2)(t)− (n+ 1)an+1
n+1f

′(t) +
n+1∑
k=1

an+2
k f (n+3−k)(t)− an+2

1 f (n+2)(t)

)
.

Using an+1
1 = an+2

1 and changing the limit in the sum yields

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n+1

(n+ 1)!

(
−(n+ 1)an+1

n+1f
′(t) +

n+2∑
k=1

an+2
k f (n+3−k)(t)− an+2

n+2f
′(t)

)

= − (eb−t − 1)n+1

(n+ 1)!

n+2∑
k=1

an+2
k f (n+3−k)(t) + (eb−t − 1)n+1

(n+ 1)! f ′(t)
(
(n+ 1)an+1

n+1 + an+2
n+2
)
.

Using an+1
n+1 = (−1)n+2 n! and an+2

n+2 = (−1)n+3(n+ 1)! yields

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n+1

(n+ 1)!

n+2∑
k=1

an+2
k f (n+3−k)(t) + (eb−t − 1)n+1

(n+ 1)! f ′(t)(n+ 1)!(−1)n+2(1 + (−1)
)
.

End of Induction: Altogether, we obtain

−f ′(t) −
n+1∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t) + eb−t

n+1∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t)

= − (eb−t − 1)n+1

(n+ 1)!

n+2∑
k=1

an+2
k f (n+3−k)(t)

which completes the induction and we obtain (15) for all n ∈ N. That means for the derivative of F

F ′(t) = −f ′(t)−
n∑
j=1

(eb−t − 1)j

j!

j∑
k=1

ajkf
(j+2−k)(t)

+eb−t
n∑
j=1

(eb−t − 1)j−1

(j − 1)!

j∑
k=1

ajkf
(j+1−k)(t) +meb−t

(eb−t − 1)n

n!

= − (eb−t − 1)n

n!

n+1∑
k=1

an+1
k f (n+2−k)(t) +meb−t

(eb−t − 1)n

n! .

The mean value theorem yields some c ∈ (a, b) with F ′(c) = 0 which means

0 = F ′(c) = − (eb−c − 1)n

n!

n+1∑
k=1

an+1
k f (n+2−k)(c) +meb−c

(eb−c − 1)n

n! . (18)
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Equation (18) implies

m = ec−b
n+1∑
k=1

an+1
k f (n+2−k)(c) .

Using F (a) = 0 we obtain

f(b) = f(a) +
n∑
j=1

(eb−a − 1)j

j!

j∑
k=1

ajkf
(j+1−k)(a) + ec−b

n+1∑
k=1

an+1
k f (n+2−k)(c) (eb−a − 1)n+1

(n+ 1)!

which completes the proof of Theorem 1. 2

We remark that as for the exponential infinitesimal fundamentum we can derive the following for
the sine case.

Proposition 4. Let [a, b] ⊂ (0, π). Further, let f ∈ C([a, b]) and f differentiable in (a, b). Then, there
is a constant c ∈ (a, b) such that

f(b) = cos(b− a)f(a) + sin(b− a) · (f ′(c) + tan(b− c)f(c)) .

Proof. Consider
F (t) := f(b)− cos(b− t)f(t)− sin(b− t)m

with
m := f(b)− cos(b− a)f(a)

sin(b− a) .

Then, it yields F (b) = 0 = F (a). The mean value theorem implies some c ∈ (a, b) such that F ′(c) = 0.
We obtain

0 = F ′(c) = − cos(b− c)f ′(c)− sin(b− c)f(c) +m cos(b− c)

which yields
m = (f ′(c) + tan(b− c)f(c)) .

Using F (a) = 0 implies

f(b) = cos(b− a)f(a) + sin(b− a) · (f ′(c) + tan(b− c)f(c))

as stated in the proposition. 2

Next, we compare Taylor’s expansion formula (9) with the expansion formula (12) which is obtained
by an exponential infinitesimal fundamentum (4) for some examples. For a smooth function f we consider
the expansions

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
2! h2 + f (3)(x)

3! h3 + · · ·

and

f(x+ h) = f(x) + f ′(x)(eh − 1) + f ′′(x)− f ′(x)
2! (eh − 1)2 + f (3)(x)− 3f ′′(x) + 2f ′(x)

3! (eh − 1)3 + · · ·

up to a given order for some x ∈ R and h ∈ R.

Example 3. We consider f(x) = esin(5x) on the interval [−1, 1/3]. Then, we calculate the expansions of
second order at the expansion point x0 = 0

f(0) + f ′(0)x+ f ′′(0)
2! x2 = 1 + 5x+ 25

2 x
2

and
f(0) + f ′(0)(ex − 1) + f ′′(0)− f ′(0)

2! (ex − 1)2 = 1 + 5(ex − 1) + 10(ex − 1)2 ,

see Figure 6 for the plots.
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esin(5x)

1 + 5x
1 + 5x+ 25

2 x
2

esin(5x)

1 + 5(ex − 1)
1 + 5(ex − 1) + 10(ex − 1)2

−1 −1

Fig. 6 Plots for f(x) = exp(sin(5x)) on the interval [−1, 1/3] and the approximations of first and second order
resulting from the expansion formulae (9) and (12). The approximation on the right resulting from (12) is closer to
the considered function f(x) = exp(sin(5x)) in the first and in the second order.

Example 4. We consider f(x) = 1
1−x on the interval [0, 8/10] and the expansion point x0 = 0. We

obtain via Taylor’s formula (9)

T6(x) :=
6∑
j=0

f (j)(0)
j! xj = 1 + x+ x2 + x3 + x4 + x5 + x6

and via the expansion formula (12)

E6(x) := 1 +
6∑
j=1

(ex − 1)j

j!

j∑
k=1

ajkf
(j+1−k)(0)

= 1 + (ex − 1) + 1
2(ex − 1)2 + 1

3(ex − 1)3 + 1
6(ex − 1)4 + 7

60(ex − 1)5 + 19
360(ex − 1)6

see Figure 7 for the plots and the comparison of the approximations.

8

0.8

8

0.8

3

0.8

1
1−x

T6(x)

1
1−x
E6(x)

1
1−x − T6(x)

1
1−x − E6(x)

Fig. 7 Plots of the approximations for f(x) = 1
1−x

of sixth order resulting from the expansion formulae (9) and (12).
The error functions on the right graph show that the approximation resulting from (12) is closer to the considered
function f where T6(x) = 1 + x + x2 + x3 + x4 + x5 + x6 and E6(x) = 1 + (ex − 1) + 1

2 (ex − 1)2 + 1
3 (ex − 1)3 +

1
6 (ex − 1)4 + 7

60 (ex − 1)5 + 19
360 (ex − 1)6.
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3.2 Expansion Formula Via Slow Exponential Infinitesimal Fundamentum

The goal is to derive another new expansion formula resulting from the infinitesimal fundamentum

g∗(z) = f∗(x0 + dh)− f(x0)
1− e−dh

(
1− ex0−z

)
+ f(x0) (19)

which we call the slow exponential infinitesimal fundamentum. That means we search an expansion for
the smooth function f of the form

f(x+ h) = c0(x) + c1(x)(1− e−h) + c2(x)(1− e−h)2 + c3(x)(1− e−h)3 + · · ·

for some coefficients c0(x), c1(x), c2(x), ... depending on the derivatives of f . The main result in this
issue is given by the following theorem.

Theorem 2. Let a, b ∈ R with a < b and n ∈ N0. Further, let f ∈ Cn([a, b]) and f (n) differentiable in
(a, b). Then, there is a constant c ∈ (a, b) such that

f(b) = f(a) +
n∑
j=1

(1− ea−b)j

j!

j∑
k=1

bjkf
(j+1−k)(a) +Rn(b, a, c) , (20)

where

Rn(b, a, c) = eb−c
(1− ea−b)n+1

(n+ 1)!

n+1∑
k=1

bn+1
k f (n+2−k)(c)

and j, k ∈ N with k ≤ j

bjk :=


1 for k = 1, j ≥ 1 ,
(j − 1)bj−1

k−1 + bj−1
k for 1 < k < j ,

(j − 1)! for j = k ≥ 1 .
(21)

Proof. The proof of Theorem 2 can be handled as the proof of Theorem 1. We omit the proof at this
point and move it to Appendix A. 2

A simple consequence is given by the following corollary.

Corollary 3. Let a, b ∈ R with a < b and n ∈ N. Further, let f ∈ Cn([a, b]) and f (n) differentiable in
(a, b). Then, the following holds:
∀x ∈ [a, b], ∀h ∈ R, |h| < min{|x− a|, |b− x|}, ∃ζ ∈ (a, b) :

f(x+ h) = f(x) +
n∑
j=1

(1− e−h)j

j!

j∑
k=1

bjkf
(j+1−k)(x) +Rn(h+ x, x, ζ) , (22)

where

Rn(h+ x, x, ζ) = ex+h−ζ (1− e−h)n+1

(n+ 1)!

n+1∑
k=1

bn+1
k f (n+2−k)(ζ) .

Note that the relation of the coefficients bjk to the coefficients ajk is given by bjk = |ajk|. In the following
we present Figure 8 and Figure 9 where one can see an overview of the coefficients bjk and an algorithm
for calculating the coefficients.

Altogether, we consider for a smooth function f the expansions

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
2! h2 + · · · ,

f(x+ h) = f(x) + f ′(x)(eh − 1) + f ′′(x)− f ′(x)
2! (eh − 1)2 + · · · ,

f(x+ h) = f(x) + f ′(x)(1− e−h) + f ′′(x) + f ′(x)
2! (1− e−h)2 + · · ·

for some x ∈ R and h ≥ 0.
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b1
1

b2
1 b2

2
b3

1 b3
2 b3

3
b4

1 b4
2 b4

3 b4
4

b5
1 b5

2 b5
3 b5

4 b5
5

b6
1 b6

2 b6
3 b6

4 b6
5 b6

6

1
1 1

1 3 2
1 6 11 6

1 10 35 50 24
1 15 85 225 274 120

Fig. 8 Coefficients bj
k

(see (21)) in the expansion formula (20) up to the order n = 6.

1
1 1

1 3 2
1 6 11 6

1 10 35 50 24
1 15 85 225 274 120

1 10 35 50 24
1205 50 175 250

12015 85 225 2741+

n = 5 :
·(+5)

Fig. 9 Algorithm for determination the coefficients b6
k from the previous coefficients b5

k.

Example 5. We consider again f(x) = 1
1−x on the interval [0, 8/10] and the expansion point x0 = 0.

We obtain via Taylor’s formula (9)

T6(x) :=
6∑
j=0

f (j)(0)
j! xj = 1 + x+ x2 + x3 + x4 + x5 + x6

and via the expansion formula (12)

E6(x) := 1 +
6∑
j=1

(ex − 1)j

j!

j∑
k=1

ajkf
(j+1−k)(0)

= 1 + (ex − 1) + 1
2(ex − 1)2 + 1

3(ex − 1)3 + 1
6(ex − 1)4 + 7

60(ex − 1)5 + 19
360(ex − 1)6

and via the expansion formula (22)

D6(x) := 1 +
6∑
j=1

(1− e−x)j

j!

j∑
k=1

bjkf
(j+1−k)(0)

= 1 +(1− e−x) + 3
2(1− e−x)2 + 7

3(1− e−x)3 + 11
3 (1− e−x)4 + 347

60 (1− e−x)5 + 3289
360 (1− e−x)6

see Figure 10 for the plots.

8

0.8

8

0.8

8

0.8

1
1−x
T6(x)

1
1−x
E6(x)

1
1−x
D6(x)

Fig. 10 Plots for f(x) = 1
1−x

and its approximations of sixth order resulting from the expansion formulae (9), (12)
and (22).
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4 Applications

In this section we present some applications which can be used in analysis, mathematical physics and
many other scientific disciplines. The new kind of definition of the derivative affects a broad field.

4.1 Approximation Formulae

One of the most important application of expansions is the resulting approximation formula of first
order around the expansion point. For |h| � 1 we approximate a function f : R→ R at the point x0 +h
by using the linear infinitesimal fundamentum (see (4)) through

f(x0 + h) ≈ f(x0) + f ′(x0)h =: T1(h, x0, f)

where x0 is the given expansion point. In the same way we obtain the approximation

f(x0 + h) ≈ f(x0) + f ′(x0)(eh − 1) =: E1(h, x0, f)

with the use of an exponential infinitesimal fundamentum (see (5)),

f(x0 + h) ≈ f(x0) + f ′(x0)(1− e−h) =: D1(h, x0, f)

with the use of a slow exponential infinitesimal fundamentum (see (19)) and

f(x0 + h) ≈ cos(h)f(x0) + f ′(x0) sin(h) =: S1(h, x0, f)

with a sine infinitesimal fundamentum (see (8)), see Figure 11 for a sketch.

f(x0 + h)

f(x0)

f(x0 + h)

x0 x0 + h

h

f(x0) + (eh − 1)f ′(x0)

f(x0) + f ′(x0)h

Fig. 11 Approximation Formulae resulting from different infinitesimal fundamenta.

Example 6. For the increasing function f(x) = ex
2 we obtain T1(h, 1, f) = e + 2eh, E1(h, 1, f) =

e+ 2e(eh− 1), D1(h, 1, f) = e+ 2e(1− e−h) and S1(h, 1, f) = cos(h)e+ 2e sin(h) at the expansion point
x0 = 1. We calculate for several values h the functions f, T1, E1, D1 and S1, see Table 1.
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x0 = 1 h = 0 h = 0.005 h = 0.1 h = 0.5 h = 1

f(1 + h) 2.71828 2.74567 3.35348 9.48774 54.5982

T1(h) 2.71828 2.74546 3.26194 5.43656 8.15485

E1(h) 2.71828 2.74553 3.29005 6.24510 12.0598

D1(h) 2.71828 2.74540 3.23564 4.85740 6.15485

S1(h) 2.71828 2.74543 3.24745 4.99194 6.04340

Table 1 f(x) = ex2 , T1(h, 1, f) = e + 2eh, E1(h, 1, f) = e + 2e(eh − 1), D1(h, 1, f) = e + 2e(1 − e−h) and
S1(h, 1, f) = cos(h)e + 2e sin(h).

Example 7. We consider the decreasing function g(x) = 1√
1+x on the interval [0, 1] and the expansion

point x0 = 0. We obtain T1(h, 0, g) = 1−1/2h, E1(h, 0, g) = 1−1/2(eh−1), D1(h, 0, g) = 1−1/2(1−e−h)
and S1(h, 0, g) = cos(h) − 1/2 sin(h). We calculate for several values h the functions f, T1, E1, D1 and
S1, see Table 2.

x0 = 0 h = 0 h = 0.005 h = 0.1 h = 0.5 h = 1

g(h) 1 0.99751 0.95346 0.81650 0.70711

T1(h) 1 0.99750 0.95000 0.75000 0.50000

E1(h) 1 0.99749 0.94741 0.67564 0.14086

D1(h) 1 0.99751 0.95242 0.80327 0.68394

S1(h) 1 0.99749 0.94509 0.63787 0.11957

Table 2 g(x) = 1√
1+x

, T1(h, 0, g) = 1 − 1/2h, E1(h, 0, g) = 1 − 1/2(eh − 1), D1(h, 0, g) = 1 − 1/2(1 − e−h) and
S1(h, 0, g) = cos(h)− 1/2 sin(h).

4.2 Algorithm For Finding The Roots Of Real-Valued Functions

We present a new iterative algorithm for finding the roots of real-valued functions. The derivation of
the method is based on the approximation formulae given in the Section 4.1. For example, Newton’s
method is derived by the approximation

f(x∗) ≈ f(x0) + f ′(x0)(x∗ − x0)

for a differentiable function f : R→ R with x∗ ∈ R close to x0 ∈ R. Let x∗ be a root of f and x0 close
to the root. Then, we obtain as an iterative algorithm

xn+1 = xn −
f(xn)
f ′(xn) (23)

for n ∈ N and starting point x0, see for instance [9,10]. We consider the approximation

f(x∗) ≈ f(x0) + f ′(x0)(ex
∗−x0 − 1)

resulting from an exponential infinitesimal fundamentum for x0 ∈ R close to x∗ ∈ R where x∗ is a root
of f . Then, we obtain the iteration

xn+1 = xn + ln
(∣∣1− f(xn)

f ′(xn)
∣∣) (24)
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x0

f

x1 x2 x3

Fig. 12 New method for finding the roots of real-valued functions via an exponential infinitesimal fundamentum.

for n ∈ N and starting point x0, see Figure 12 for an illustration. Note that the convergence of the
algorithm as for Newton’s method is not ensured for arbitrary functions or arbitrary starting points.

Example 8. We search the square root of two. Therefore, we consider the function f(x) = x2 − 2
and compare Newton’s algorithm with the algorithm (24) obtained by an exponential infinitesimal
fundamentum in Table 3.

√
2 ≈ 1.4142135624 xn+1 = xn − f(xn)

f ′(xn) xn+1 = xn + ln
(∣∣1− f(xn)

f ′(xn)

∣∣)
x0 1 1

x1 1.5000000000 1.4054651081

x2 1.4166666667 1.4142025077

x3 1.4142156863 1.4142135624

x4 1.4142135624 1.4142135624

Table 3 Comparison of the algorithms for the function f(x) = x2 − 2 and starting point x0 = 1. The new method
introduced in (24) converges faster to the root of f than Newton’s method (23).

Remark 3. Note that one can obtain in the same way the following iterations via different infinitesimal
fundamenta. Using a slow exponential infinitesimal fundamentum (see (19)) we obtain

xn+1 = xn − ln
(

1 + f(xn)
f ′(xn)

)
for n ∈ N. Using a sine infinitesimal fundamentum (see (8)) yields the iteration

xn+1 = xn + arctan
(
− f(xn)
f ′(xn)

)
where arctan is the inverse of the tangent function.
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4.3 Numerical Schemes

Approximation of partial differential equations is an important step in proving the existence of solutions.
There are several methods of approximation where we mention the use of the convolution with smooth
mollifiers, e.g. see [21]. The goal here is to obtain an approximative system by a discretization of partial
differential equations. We consider for u : R× R+ → Rd with d ∈ N the Cauchy problem{

∂tu(x, t) = G(u(x, t), ∂xu(x, t), ∂2
xu(x, t), ... , ∂mx u(x, t)),

u(x, 0) = u0(x)
(25)

where m ∈ N, u0 : R → Rd and G : (Rd)m+1 → Rd are given. Using the method of lines we discretize
(25) in time and space by choosing a time step ∆t > 0 and increment ∆x > 0. We define the discrete
mesh points by

tn := n∆t for n ∈ N0 and xj := j∆t for j ∈ Z .
We approximate the exact solution u of (25) on the discrete mesh points, i.e.

unj ≈ u(xj , tn) .

Relying on the finite difference method the simplest discretization of (25) is obtained by using a linear
infinitesimal fundamentum

un+1
j − unj
∆t

= G

unj , unj+1 − unj
∆x

, ...,

m∑
k=0

(−1)k
(
m
k

)
unj+m−k

(∆x)m

 (26)

with u0
j = u0(xj) for j ∈ Z. Note that there are many different possible choices to discretize (25),

e.g. Euler’s forward or backward method, Lax Friedrichs and so on, see [20] for an overview about
discretization of partial differential equations. The approximative solution is given by solving the discrete
system in each time step

un+1
j = unj +∆tG

unj , unj+1 − unj
∆x

, ...,

m∑
k=0

(−1)k
(
m
k

)
unj+m−k

(∆x)m


where u0

j = u0(xj) is the starting point. We present a new idea for the time discretization of (25) which
can be adapted in the space variable. We introduce

un+1
j − unj
e∆t − 1 = G

unj , unj+1 − unj
∆x

, ...,

m∑
k=0

(−1)k
(
m
k

)
unj+m−k

(∆x)m


by using an exponential infinitesimal fundamentum. This yields a modified discretization

un+1
j = unj + (e∆t − 1)G

unj , unj+1 − unj
∆x

, ...,

m∑
k=0

(−1)k
(
m
k

)
unj+m−k

(∆x)m

 . (27)

This kind of discretization (27) was used for some specific examples in [22] and is known as the nonstan-
dard finite difference scheme. Note that in this work the advantages or disadvantages of the presented
discretizations are not discussed. It is also possible to discretize the equation in the space variable via
an exponential infinitesimal fundamentum which yields

un+1
j = unj + (e∆t − 1)G

unj , unj+1 − unj
e∆x − 1 , ...,

m∑
k=0

(−1)k
(
m
k

)
unj+m−k

m∑
k=0

(
m
k

)
(−1)kek∆x

 .
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Note that we can apply in the same way a mixture of infinitesimal fundamenta to obtain discretized
version of (25). The choice of the discretization depends on the infinitesimal fundamentum and on the
wished property of the discretized system concerning the exactness or discrete energy consistency.

4.4 Entropy Consistent Approximations of Conservation Laws in Time and Space

We present a new approach for discretization of nonlinear conservation laws. This new method yields an
explicit numerical scheme which approximates differential equations in time and one-dimensional space
in a fully entropy stable way. Entropy stable discretizations in space of time-dependent conservation
laws are well known. We continue the discretization of such semi-discretized conservative problems in
time and obtain a fully entropy consistent numerical scheme. The method is based on the infinitesi-
mal fundamentum. The infinitesimal fundamentum generalizes the understanding of the derivative for
real-valued functions such that it is possible to approximate the derivative in several ways. The suit-
able choice of the infinitesimal fundamentum depending on the entropy of the system enables the fully
entropy consistency of the discretized system.

We introduce the definition of an approximation for partial differential equations. We consider for
u : R× R+ → Rd : (x, t) 7→ u(x, t) with d ≥ 1 the general system of partial differential equations

∂tu(x, t) = F(u(x, t), ∂xu(x, t), ..., ∂mx u(x, t)),
u(x, 0) = u0(x),

(28)

where F : Rd+m+1 → Rd, m ∈ N0 and u0 : R → Rd are given. The first step is to do a spatial
discretization of (28) by using the method of lines. We approximate the exact solution u(x, t) of (28)
on a spatial grid through

uj(t) ≈ u(xj , t)

for xj = j∆x with j ∈ Z and a given spatial increment ∆x > 0.

Definition 9. A system for uj : R+ → Rd : t 7→ uj(t) with j ∈ Z of the form

d
dtuj(t) = F∗(∆x,uj(t),uj−1(t),uj+1(t), ....), (29)

for a given F∗ : R ×
(
Rd
)Z → Rd is called a semi-discretization of (28) if the limit case of (29) for

∆x→ 0 coincides with (28), i.e. for a smooth classical solution u(x, t) of (28) it yields that

lim
h→0

F∗(h,u(x, t),u(x− h, t),u(x+ h, t), ....) = F(u(x, t), ∂xu(x, t), ..., ∂mx u(x, t))

for all fixed (x, t) ∈ R×R+. Further a semi-discretization of the form (29) is conservative if there are
some Fj+1/2 = Fj+1/2(uj(t),uj−1(t),uj+1(t), ....) such that

F∗(∆x,uj(t),uj−1(t),uj+1(t), ....) =
Fj+1/2 − Fj−1/2

∆x

for all j ∈ Z.

Example 9 (Tadmor [27]). We consider for the scalar equation

ut(x, t) = ux(x, t) exp(u(x, t)) =: F(u(x, t), ux(x, t)) (30)

the system of ordinary differential equations

u̇j(t) = exp(uj+1(t))− exp(uj−1(t))
2∆x =: F∗(∆x, uj−1(t), uj+1(t)), (31)
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where we replaced the time derivative of uj(t) by u̇j(t). Then it yields for a smooth solution u(x, t) of
(30) by using the rule of L’Hospital that

lim
h→0

F∗(h, u(x− h, t), u(x+ h, t)) = lim
h→0

ux(x+ h, t) exp(ux(x+ h, t))
2

+ lim
h→0

ux(x− h, t) exp(ux(x− h, t))
2

= F(u(x, t), ux(x, t))

which shows that (31) is a semi-discretization of (30). Further (31) is in conservative form by choosing

Fj+1/2(uj(t), uj−1(t), uj+1(t), ....) = exp(uj+1(t)) + exp(uj(t))
2 .

The second step is to go on with the discretization in time. We approximate the time derivative in
(29) to obtain a fully discretized system. That means we approximate the exact solution u(x, t) of (28)
through

unj ≈ u(xj , tn)

for tn = n∆t with n ∈ N0 and a given time increment ∆t > 0.

Definition 10. A system for unj ∈ Rd with n ∈ N0 and j ∈ Z of the form

G∗(∆t,un+1
j ,unj ) = F∗(∆x,unj ,unj−1,u

n
j+1, ....), (32)

with a given G∗ : R+ ×Rd ×Rd → Rd is called an approximation of (28) if the limit case of (32) for
∆t→ 0 and ∆x→ 0 coincides with (28), i.e. for a smooth classical solution u(x, t) of (28) it yields that

lim
σ→0

G∗(σ,u(x, t+ σ),u(x, t)) = ut(x, t)

and
lim
h→0

F∗(h,u(x, t),u(x− h, t),u(x+ h, t), ....) = F(u(x, t), ∂xu(x, t), ..., ∂mx u(x, t))

for all fixed (x, t) ∈ R × R+. Further an approximation of (28) is called exlicit if (32) can be written
in the form

un+1
j = G(∆t,∆x,unj ,unj−1,u

n
j+1, ...)

for all n ∈ N0 and j ∈ Z for some G : R+ × R+ × (Rd)Z → Rd.

Example 10. We consider for (30) an approximation of the form

exp(−unj )
exp(un+1

j )− exp(unj )
∆t

=
exp(unj+1(t))− exp(unj−1(t))

2∆x (33)

for all n ∈ N0 and j ∈ Z. Then it yields that (33) is an approximation of (30) since we obtain for a
smooth solution u(x, t) of (30) by using the rule of L’Hospital that

lim
σ→0

G∗(σ, u(x, t+ σ), u(x, t)) = lim
σ→0

exp(−u(x, t)) exp(u(x, t+ σ))− exp(u(x, t))
σ

= lim
σ→0

ut(x, t+ σ) exp(u(x, t+ σ))
exp(u(x, t)) = ut(x, t)

and the limit lim
h→0

F∗(h, u(x, t), u(x− h, t), u(x+ h, t), ....) was already calculated in Example 9. Further
the approximation (33) is explicit since (33) can be written in the form

un+1
j = unj + ln

(
1 + ∆t

2∆x

(
exp(unj+1)− exp(unj−1)

))
.
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Note that the time approximation on the left in (33) is done by using the funtion f(u) = exp(u)
which can be generalized to

1
f ′(unj )

f(un+1
j )− f(unj )

∆t
.

Now if we choose some entropy function η corresponding to (28) for the time approximation, we obtain
an energy/entropy consistent numerical scheme. For example, consider the scalar equation

ut(x, t)− u(x, t)ux(x, t) = 0 (34)

and the entropy function η1(u) = ln(u) to (34). By using the Tadmor [27] approximation in space, we
consider the space approximation

d
dtuj(t) = uj(t)

uj+1(t)− uj−1(t)
2∆x . (35)

Using the entropy approximation in time we obtain an energy consistent approximation of (34) as

un+1
j = unj exp

(
∆t

2∆x
(
unj+1 − unj−1

))
(36)

which satisfies
η1(un+1

j )− η1(unj ) ≤ Qnj+1 −Qnj−1

with Qnj = ∆t
2∆xu

n
j . In the same way we can obtain an entropy consistent approximation for (34) by using

the entropy function η2(u) = u2

2 . Again, using Tadmor in space but not with the same discretization as
before, we obtain

d
dtuj(t) = uj+1(t) + uj(t) + uj−1(t)

3 ·
uj+1(t)− uj−1(t)

2∆x (37)

as a space approximation of (34). We obtain by using η2 in the time discretization

un+1
j =

√
(unj )2 + ∆t

3∆xu
n
j (unj+1 + unj + unj−1)(unj+1 − unj−1) (38)

which satisfies η2(un+1
j )− η2(unj ) ≤Wn

j+1 −Wn
j for some explicit given Wn

j .
We note that this mindset for approximation of partial differential equations can maybe be used for

showing the existence of solution to the original problem by using a suitable approximation and entropy
function in some Sobolev spaces.

4.5 Series

We consider a concrete example such that the rest term in the expansion formulae (12) and (22) vanishes.
This yields a representation of the considered function as an infinite sum. For instance, the exponential
function results in (via Taylor’s expansion formula (9) with expansion point x0 = 0)

eh =
∞∑
j=0

hj

j!

for h ∈ R. We apply the new kind of expansion formulae (12) and (22) to a simple function to obtain
convergent series. We consider the function f(x) = x. Then, Theorem 1 (respectively equation (12))
yields the expansion of f for x ∈ R and some h ∈ R

f(x+ h) = x+ h = x+ (eh − 1)− 1
2(eh − 1)2 + 2

3! (e
h − 1)3 − 6

4! (e
h − 1)4 + · · ·

which implies
h = (eh − 1)− 1

2(eh − 1)2 + 1
3(eh − 1)3 − 1

4(eh − 1)4 + · · · .
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Choosing h = ln(y) for some y > 0 yields the well-known identity

ln(y) = (y − 1)− 1
2(y − 1)2 + 1

3(y − 1)3 − 1
4(y − 1)4 + · · · =

∞∑
j=1

(−1)j+1

j
(y − 1)j

where the sum is convergent for all 0 < y ≤ 2. It is also possible to consider the expansion formula given
in Theorem 2 (respectively equation (22)) which yields in the same way

h = (1− e−h) + 1
2(1− e−h)2 + 1

3(1− e−h)3 + 1
4(1− e−h)4 + · · · .

Choosing again h = ln(y) implies

ln(y) =
∞∑
j=1

(1− 1
y )j

j

which is convergent for all y ≥ 1/2. Altogether, we represent the natural logarithm ln(y) for all y > 0
as

ln(y) =


∞∑
j=1

(−1)j+1

j (y − 1)j for 0 < y ≤ 1/2,
∞∑
j=1

1
j

(
1− 1

y

)j
for 1/2 ≤ y,

(39)

where we note that the identity

ln(y) =
∞∑
j=1

(−1)j+1

j
(y − 1)j =

∞∑
j=1

1
j

(
1− 1

y

)j
holds for values 1/2 ≤ y ≤ 2. The representation of the natural logarithm ln(y) for y > 1 can also be
obtained by the identity

ln(1 + y) = − ln
(

1− y

1 + y

)
.

The inequality | − y
1+y | < 1 implies

ln(1 + y) = − ln
(

1− y

1 + y

)
=
∞∑
j=1

(−1)j

j

(
− y

1 + y

)j
=
∞∑
j=1

1
j

(
y

1 + y

)j
such that

ln(z) =
∞∑
j=1

1
j

(
1− 1

z

)j
for all z ≥ 2 which verifies the representation (39).

We mention that by using several expansion formulae ((9), (12) and (22)) we can solve ordinary and
partial differential equations. In particular, the representation of functions as series (e.g. (39)) allows
to solve differential equations. We illustrate this approach on the following example. We consider the
one-dimensional problem for t ∈ [0, 1/e)

x′(t) = ex(t), x(0) = 1. (40)

By using the separation of variables the solution to (40) on the interval [0, 1/e) is given by x(t) =
1− ln(1− et). We state another possible way to solve the problem (40). We expand the solution x(t) to
(40) via Taylor’s formula (9) for the expansion point x0 = 0. Differentiating the first equation in (40)
with respect to t yields the values of the derivatives of the solution x(t) at the expansion point. We
obtain

x(h) = 1 + eh+ 1
2e

2h2 + · · · = 1 +
∞∑
j=1

(eh)j

j
. (41)

By applying (39) to the sum in (41) we obtain x(h) = 1 + ln
( 1

1−eh
)
.
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5 Open Questions And Conjectures

We list open questions and some conjectures:
1. We think that Weierstrass approximation theorem (see e.g. [30,5,29]) can be adapted such that

every continuous functions can be uniformly approximated as closely as desired by a function of the
form

n∑
j=0

cj,n(ex − 1)j

for n ∈ N0 and cj,n ∈ R. The proof of the following statement is pending.

Conjecture (Approximation of continuous functions). Let f ∈ C([a, b]) for a, b ∈ R with
a < b. Then

∀ε > 0∃n ∈ N0 ∃En ∀x ∈ [a, b] : |f(x)− En(x)| < ε ,

where En(x) is for n ∈ N0 a function of the form

En(x) =
n∑
j=0

cj,n(ex − 1)j

for cj,n ∈ R.
2. In Theorem 1 (see (11)) we present a recursive formula for the coefficients ank . It is expected to have

an explicit representation for ank . That is, there is some

Λ : N× N→ Z

such that Λ(n, k) = ank for all (n, k) ∈ N2. This property would simplify the series representation in
the expansion formula in Theorem 1.

3. A generalized version for the expansion formula is missing. That means, we expect an expansion
formula depending on an arbitrary infinitesimal fundamentum g. The first step in this matter is to
consider the generalized exponential infinitesimal fundamentum in x0 ∈ R with the infinitesimal dh
of the form

g∗(z) = f∗(x0 + dh)− f(x0)
eλdh − 1

(
eλ(z−x0) − 1

)
+ f(x0)

for λ ∈ R \ {0}. This should yield a generalized version of (12) respectively (22) depending on λ.
Then, the expansion formulae in Theorem 1 (respectively equation (12)) and Theorem 2 (respectively
equation (22)) are obtained by the special cases for λ = 1 and λ = −1.

4. The approximation formula resulting by a sine infinitesimal fundamentum

f(x0 + h) ≈ cos(h)f(x0) + f ′(x0) sin(h)

indicates also an expansion formula. This formula is pending.
5. This works deals with the one-dimensional case. As Taylor’s Theorem, the expansion formulae de-

rived in this work and also the concept of the infinitesimal fundamentum should be extended into
the multi-dimensional case.

6. Which conditions on the smooth real-valued function f have to be put for the convergence of the
expansion formula in Theorem 1 or Theorem 2? The convergence of the resulting series for explicit
functions should be considered in a general framework.

7. Is it possible to define fractional derivatives (see e.g. [24]) via modified infinitesimal fundamenta?
8. Albert Einstein’s theory of special relativity deduces the kinetic energy of a moving object with

velocity v and mass m as

Ekin = mc2√
1− v2

c2

−mc2

where c is the speed of light, see [16]. Using Taylor’s Theorem for v � c yields in approximation for
the kinetic energy

Ekin ≈
1
2mv

2

as in classical Newtonian physics where we used (1 +x)−1/2 = 1− 1/2x+ 3/8x2− · · · for |x| � 1. Is
this approach applicable for other physical examples by using the expansion formula from Theorem
1 or Theorem 2 or the approximation formulae given in Section 4.1?
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A Proof Of Theorem 2

Let a, b ∈ R with a < b and n ∈ N0. Further, let f ∈ Cn([a, b]) and f (n) differentiable in (a, b). Then, there is a
constant c ∈ (a, b) such that

f(b) = f(a) +
n∑

j=1

(1− ea−b)j

j!

j∑
k=1

bj
k

f (j+1−k)(a) + Rn(h, a, c) ,

where

Rn(a− b, a, c) = eb−c (1− ea−b)n+1

(n + 1)!

n+1∑
k=1

bn+1
k

f (n+2−k)(c)

and j, k ∈ N with k ≤ j

bj
k

:=

1 for k = 1, j ≥ 1 ,

(j − 1)bj−1
k−1 + bj−1

k
for 1 < k < j ,

(j − 1)! for j = k ≥ 1 .

Proof. By following the proof of Theorem 1 we define

F (t) := f(b)− f(t)−
n∑

j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+1−k)(t)−m
(1− et−b)n+1

(n + 1)!

with

m :=

f(b)− f(a)−
n∑

j=1

(1−ea−b)j
j!

j∑
k=1

bj
k

f (j+1−k)(a)

(1−ea−b)n+1

(n+1)!

.

Then, we obtain
F (b) = 0 = F (b)

and the mean value theorem yields some c ∈ (a, b) such that F ′(c) = 0. We determine the derivative of F

F ′(t) = −f ′(t)−
n∑

j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t)

+et−b

n∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t) + met−b (1− et−b)n

n!
.

For all n ∈ N we have the relation

−f ′(t) −
n∑

j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n

n!

n+1∑
k=1

bn+1
k

f (n+2−k)(t) (42)

which will be proved as before by an induction.
Induction Basis n = 1: We obtain

−f ′(t)− (1− et−b)b1
1f ′′(t) + et−bb1

1f ′(t) = −(1− et−b)(f ′′(t) + f ′(t))
= −(1− et−b)(b2

1f ′′(t) + b2
2f ′(t))

which shows that (42) is true for n = 1.
Induction Hypothesis: We assume that statement (42) holds for n ∈ N, i.e.

−f ′(t) −
n∑

j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n

n!

n+1∑
k=1

bn+1
k

f (n+2−k)(t) . (43)
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By using the induction hypothesis (43) we show that the statement (42) holds for n + 1.
Inductive Step n n + 1: We calculate

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −f ′(t)−
n∑

j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

−
(1− et−b)n+1

(n + 1)!

n+1∑
k=1

bn+1
k

f (n+3−k)(t) + et−b (1− et−b)n

n!

n+1∑
k=1

bn+1
k

f (n+2−k)(t) .

Using the induction hypothesis (43) yields

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n

n!

n+1∑
k=1

bn+1
k

f (n+2−k)(t)−
(1− et−b)n+1

(n + 1)!

n+1∑
k=1

bn+1
k

f (n+3−k)(t) (44)

+et−b (1− et−b)n

n!

n+1∑
k=1

bn+1
k

f (n+2−k)(t) .

We take on the right hand-side in (44) the first and last term together. Further, we factor out − (1−et−b)n+1

(n+1)! which
implies

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n+1

(n + 1)!

(
n+1∑
k=1

bn+1
k

f (n+3−k)(t) + (n + 1)bn+1
k

f (n+2−k)(t)

)
.

A shifting in the index yields

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n+1

(n + 1)!

(
n∑

k=0

bn+1
k+1 f (n+2−k)(t) +

n+1∑
k=1

(n + 1)bn+1
k

f (n+2−k)(t)

)

= −
(1− et−b)n+1

(n + 1)!

(
n∑

k=1

bn+1
k+1 f (n+2−k)(t) +

n∑
k=1

(n + 1)bn+1
k

f (n+2−k)(t)

)
−

(1− et−b)n+1

(n + 1)!

(
bn+1

1 f (n+2)(t) + (n + 1)bn+1
n+1f ′(t)

)
.

We obtain

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n+1

(n + 1)!

(
bn+1

1 f (n+2)(t) + (n + 1)bn+1
n+1f ′(t) +

n∑
k=1

f (n+2−k)(t)
(

bn+1
k+1 + (n + 1)bn+1

k

))
.

Using (
bn+1

k+1 + (n + 1)bn+1
k

)
= bn+2

k+1
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and shifting again in the index yields

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n+1

(n + 1)!

(
bn+1

1 f (n+2)(t) + (n + 1)bn+1
n+1f ′(t) +

n+1∑
k=2

bn+2
k

f (n+3−k)(t)

)

= −
(1− et−b)n+1

(n + 1)!

(
bn+1

1 f (n+2)(t) + (n + 1)bn+1
n+1f ′(t) +

n+1∑
k=1

bn+2
k

f (n+3−k)(t)− bn+2
1 f (n+2)(t)

)
.

Using bn+1
1 = bn+2

1 and changing the limit in the sum yields

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n+1

(n + 1)!

(
(n + 1)bn+1

n+1f ′(t) +
n+2∑
k=1

bn+2
k

f (n+3−k)(t)− bn+2
n+2f ′(t)

)

= −
(1− et−b)n+1

(n + 1)!

n+2∑
k=1

bn+2
k

f (n+3−k)(t) +
(1− et−b)n+1

(n + 1)!
f ′(t)

(
−(n + 1)bn+1

n+1 + bn+2
n+2
)

.

Using bn+1
n+1 = n! and bn+2

n+2 = (n + 1)! yields

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n+1

(n + 1)!

n+2∑
k=1

bn+2
k

f (n+3−k)(t) +
(1− et−b)n+1

(n + 1)!
f ′(t)

(
(n + 1)!− (n + 1)!

)
.

End of Induction: Altogether, we obtain

−f ′(t) −
n+1∑
j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t) + et−b

n+1∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t)

= −
(1− et−b)n+1

(n + 1)!

n+2∑
k=1

bn+2
k

f (n+3−k)(t)

which completes the induction and we obtain (42) for all n ∈ N. That means for the derivative of F

F ′(t) = −f ′(t)−
n∑

j=1

(1− et−b)j

j!

j∑
k=1

bj
k

f (j+2−k)(t)

+et−b

n∑
j=1

(1− et−b)j−1

(j − 1)!

j∑
k=1

bj
k

f (j+1−k)(t) + met−b (1− et−b)n

n!

= −
(1− et−b)n

n!

n+1∑
k=1

bn+1
k

f (n+2−k)(t) + met−b (1− et−b)n

n!
.

The mean value theorem yields some c ∈ (a, b) with F ′(c) = 0 which means

0 = F ′(c) = −
(1− ec−b)n

n!

n+1∑
k=1

bn+1
k

f (n+2−k)(c) + mec−b (1− ec−b)n

n!
. (45)

Equation (45) implies

m = eb−c

n+1∑
k=1

bn+1
k

f (n+2−k)(c) .



Infinitesimal Fundamentum 33

By using F (a) = 0 we obtain

f(b) = f(a) +
n∑

j=1

(1− ea−b)j

j!

j∑
k=1

bj
k

f (j+1−k)(a) + eb−c

n+1∑
k=1

bn+1
k

f (n+2−k)(c)
(1− ea−b)n+1

(n + 1)!

which completes the proof of Theorem 2. 2
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